User interface language: English | Español

HL Paper 1

Consider the function f n ( x ) = ( cos 2 x ) ( cos 4 x ) ( cos 2 n x ) ,   n Z + .

Determine whether f n is an odd or even function, justifying your answer.

[2]
a.

By using mathematical induction, prove that

f n ( x ) = sin 2 n + 1 x 2 n sin 2 x ,   x m π 2 where m Z .

[8]
b.

Hence or otherwise, find an expression for the derivative of f n ( x ) with respect to x .

[3]
c.

Show that, for n > 1 , the equation of the tangent to the curve y = f n ( x ) at x = π 4 is 4 x 2 y π = 0 .

[8]
d.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

even function     A1

since cos k x = cos ( k x ) and f n ( x ) is a product of even functions     R1

OR

even function     A1

since ( cos 2 x ) ( cos 4 x ) = ( cos ( 2 x ) ) ( cos ( 4 x ) )     R1

 

Note:     Do not award A0R1.

 

[2 marks]

a.

consider the case n = 1

sin 4 x 2 sin 2 x = 2 sin 2 x cos 2 x 2 sin 2 x = cos 2 x     M1

hence true for n = 1     R1

assume true for n = k , ie, ( cos 2 x ) ( cos 4 x ) ( cos 2 k x ) = sin 2 k + 1 x 2 k sin 2 x     M1

 

Note:     Do not award M1 for “let n = k ” or “assume n = k ” or equivalent.

 

consider n = k + 1 :

f k + 1 ( x ) = f k ( x ) ( cos 2 k + 1 x )     (M1)

= sin 2 k + 1 x 2 k sin 2 x cos 2 k + 1 x     A1

= 2 sin 2 k + 1 x cos 2 k + 1 x 2 k + 1 sin 2 x     A1

= sin 2 k + 2 x 2 k + 1 sin 2 x     A1

so n = 1 true and n = k true n = k + 1 true. Hence true for all n Z +     R1

 

Note:     To obtain the final R1, all the previous M marks must have been awarded.

 

[8 marks]

b.

attempt to use f = v u u v v 2 (or correct product rule)     M1

f n ( x ) = ( 2 n sin 2 x ) ( 2 n + 1 cos 2 n + 1 x ) ( sin 2 n + 1 x ) ( 2 n + 1 cos 2 x ) ( 2 n sin 2 x ) 2     A1A1

 

Note:     Award A1 for correct numerator and A1 for correct denominator.

 

[3 marks]

c.

f n ( π 4 ) = ( 2 n sin π 2 ) ( 2 n + 1 cos 2 n + 1 π 4 ) ( sin 2 n + 1 π 4 ) ( 2 n + 1 cos π 2 ) ( 2 n sin π 2 ) 2     (M1)(A1)

f n ( π 4 ) = ( 2 n ) ( 2 n + 1 cos 2 n + 1 π 4 ) ( 2 n ) 2     (A1)

= 2 cos 2 n + 1 π 4   ( = 2 cos 2 n 1 π )     A1

f n ( π 4 ) = 2     A1

f n ( π 4 ) = 0     A1

 

Note:     This A mark is independent from the previous marks.

 

y = 2 ( x π 4 )     M1A1

4 x 2 y π = 0     AG

[8 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.



Consider the equation z 4 + a z 3 + b z 2 + c z + d = 0 , where  a b c , d R and  z C .

Two of the roots of the equation are log26 and i 3 and the sum of all the roots is 3 + log23.

Show that 6 a + d + 12 = 0.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

i 3  is a root      (A1)

3 + lo g 2 3 lo g 2 6 ( = 3 + lo g 2 1 2 = 3 1 = 2 ) is a root       (A1)

sum of roots:  a = 3 + lo g 2 3 a = 3 lo g 2 3      M1

Note: Award M1 for use of a is equal to the sum of the roots, do not award if minus is missing.

Note: If expanding the factored form of the equation, award M1 for equating a to the coefficient of z 3 .

 

product of roots:  ( 1 ) 4 d           = 2 ( lo g 2 6 ) ( i 3 ) ( i 3 )       M1

                                                    = 6 lo g 2 6       A1

Note: Award M1A0 for  d = 6 lo g 2 6

 

6 a + d + 12 = 18 6 lo g 2 3 + 6 lo g 2 6 + 12

 

EITHER

= 6 + 6 lo g 2 2 = 0       M1A1AG

Note: M1 is for a correct use of one of the log laws.

OR

= 6 6 lo g 2 3 + 6 lo g 2 3 + 6 lo g 2 2 = 0        M1A1AG

Note: M1 is for a correct use of one of the log laws.

 

[7 marks]

Examiners report

[N/A]



A function f is defined by fx=2x-1x+1, where x, x-1.

The graph of y=f(x) has a vertical asymptote and a horizontal asymptote.

Write down the equation of the vertical asymptote.

[1]
a.i.

Write down the equation of the horizontal asymptote.

[1]
a.ii.

On the set of axes below, sketch the graph of y=f(x).

On your sketch, clearly indicate the asymptotes and the position of any points of intersection with the axes.

[3]
b.

Hence, solve the inequality 0<2x-1x+1<2.

[1]
c.

Solve the inequality 0<2x-1x+1<2.

[2]
d.

Markscheme

x=-1          A1

 

[1 mark]

a.i.

y=2          A1

 

[1 mark]

a.ii.

rational function shape with two branches in opposite quadrants, with two correctly positioned asymptotes and asymptotic behaviour shown         A1

axes intercepts clearly shown at x=12 and y=-1         A1A1

 

[3 marks]

b.

x>12         A1


Note:
Accept correct alternative correct notation, such as 12,  and ]12,[.

 

[1 mark]

c.

EITHER

attempts to sketch y=2x-1x+1        (M1)


OR

attempts to solve 2x-1=0        (M1)

 

Note: Award the (M1) if x=12 and x=-12 are identified.

 

THEN

x<-12 or x>12         A1

 

Note: Accept the use of a comma. Condone the use of ‘and’. Accept correct alternative notation.

  

[2 marks]

d.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.
[N/A]
c.
[N/A]
d.



In the following Argand diagram, the points Z1, O and Z2 are the vertices of triangle Z1OZ2 described anticlockwise.

The point Z1 represents the complex number z1=r1eiα, where r1>0. The point Z2 represents the complex number z2=r2eiθ, where r2>0.

Angles α, θ are measured anticlockwise from the positive direction of the real axis such that 0α, θ<2π and 0<α-θ<π.

In parts (c), (d) and (e), consider the case where Z1OZ2 is an equilateral triangle.

Let z1 and z2 be the distinct roots of the equation z2+az+b=0 where z and a, b.

Show that z1z2=r1r2eiα-θ where z2 is the complex conjugate of z2.

[2]
a.

Given that Rez1z2=0, show that Z1OZ2 is a right-angled triangle.

[2]
b.

Express z1 in terms of z2.

[2]
c.i.

Hence show that z12+z22=z1z2.

[4]
c.ii.

Use the result from part (c)(ii) to show that a2-3b=0.

[5]
d.

Consider the equation z2+az+12=0, where z and a.

Given that 0<α-θ<π, deduce that only one equilateral triangle Z1OZ2 can be formed from the point O and the roots of this equation.

[3]
e.

Markscheme

z2=r2e-iθ          (A1)

z1z2=r1eiαr2e-iθ           A1

z1z2=r1r2eiα-θ           AG


Note: Accept working in modulus-argument form

 

[2 marks]

a.

Rez1z2=r1r2cosα-θ  =0           A1

α-θ=arcos0  r1,r2>0

α-θ=π2  (as 0<α-θ<π)           A1

so Z1OZ2 is a right-angled triangle           AG

 

[2 marks]

b.

EITHER

z1z2=r1r2eiα-θ=eiπ3  (since r1=r2)            (M1)


OR

z1=r2eiθ+π3  =r2eiθeiπ3            (M1)


THEN

z1=z2eiπ3           A1

 

Note: Accept working in either modulus-argument form to obtain z1=z2cosπ3+isinπ3 or in Cartesian form to obtain z1=z212+32i.

 

[2 marks]

c.i.

substitutes z1=z2eiπ3 into z12+z22             M1

z12+z22=z22ei2π3+z22  =z22ei2π3+1             A1

 

EITHER

ei2π3+1=eiπ3             A1


OR

z22ei2π3+1=z22-12+32i+1

=z2212+32i             A1

 

THEN

z12+z22=z22eiπ3

=z2z2eiπ3  and  z2eiπ3=z1             A1

so z12+z22=z1z2             AG

 

Note: For candidates who work on the LHS and RHS separately to show equality, award M1A1 for z12+z22=z22ei2π3+z22  =z22ei2π3+1, A1 for z1z2=z22eiπ3 and A1 for ei2π3+1=eiπ3. Accept working in either modulus-argument form or in Cartesian form.

 

[4 marks]

c.ii.

METHOD 1

z1+z2=-a  and  z1z2=b              (A1)

a2=z12+z22+2z1z2             A1

a2=2z1z2+z1z2=3z1z2             A1

substitutes b=z1z2 into their expression             M1

a2=2b+b  OR  a2=3b             A1


Note: If z1+z2=-a is not clearly recognized, award maximum (A0)A1A1M1A0.

 

so a2-3b=0              AG

 

METHOD 2

z1+z2=-a  and  z1z2=b              (A1)

z1+z22=z12+z22+2z1z2             A1

z1+z22=2z1z2+z1z2=3z1z2             A1

substitutes b=z1z2 and z1+z2=-a into their expression              M1

a2=2b+b  OR  a2=3b             A1


Note: If z1+z2=-a is not clearly recognized, award maximum (A0)A1A1M1A0.


so a2-3b=0              AG

 

[5 marks]

d.

a2-3×12=0

a=±6  z2±6z+12=0             A1

for a=-6:

z1=3+3i, z2=3-3i  and  α-θ=-5π3  which does not satisfy 0<α-θ<π             R1

for a=6:

z1=-3-3i, z2=-3+3i  and  α-θ=π3             A1

so (for 0<α-θ<π), only one equilateral triangle can be formed from point O and the two roots of this equation             AG

 

[3 marks]

e.

Examiners report

The vast majority of candidates scored full marks in parts (a) and (b). If they did not, it was normally due to the lack of rigour in setting out of the answer to a "show that" question. Part (c) was, though, more often than not poorly done. Many candidates could not use the given condition (equilateral triangle) to find z1 in terms of z2. Part (d) was well answered by a rather high number of candidates.

Only a handful of students made good progress in (e), not even finding the possible values for a.

a.
[N/A]
b.
[N/A]
c.i.
[N/A]
c.ii.
[N/A]
d.
[N/A]
e.



Let the roots of the equation  z 3 = 3 + 3 i be  u v and  w .

On an Argand diagram, u v and  w  are represented by the points U, V and W respectively.

Express  3 + 3 i in the form  r e i θ , where  r > 0 and π < θ π .

[5]
a.

Find  u v and  w  expressing your answers in the form  r e i θ , where  r > 0 and  π < θ π .

[5]
b.

Find the area of triangle UVW.

[4]
c.

By considering the sum of the roots u v and  w , show that

cos 5 π 18 + cos 7 π 18 + cos 17 π 18 = 0 .

[4]
d.

Markscheme

attempt to find modulus      (M1)

r = 2 3 ( = 12 )       A1

attempt to find argument in the correct quadrant      (M1)

θ = π + arctan ( 3 3 )       A1

= 5 π 6       A1

3 + 3 i = 12 e 5 π i 6 ( = 2 3 e 5 π i 6 )

[5 marks]

a.

attempt to find a root using de Moivre’s theorem      M1

12 1 6 e 5 π i 18        A1

attempt to find further two roots by adding and subtracting  2 π 3 to the argument    M1

12 1 6 e 7 π i 18        A1

12 1 6 e 17 π i 18        A1

Note: Ignore labels for u v and  w at this stage.

 

[5 marks]

b.

METHOD 1
attempting to find the total area of (congruent) triangles UOV, VOW and UOW        M1

Area = 3 ( 1 2 ) ( 12 1 6 ) ( 12 1 6 ) sin 2 π 3       A1A1

Note: Award A1 for  ( 12 1 6 ) ( 12 1 6 )  and A1 for  sin 2 π 3

= 3 3 4 ( 12 1 3 )  (or equivalent)     A1

 

METHOD 2

UV2  = ( 12 1 6 ) 2 + ( 12 1 6 ) 2 2 ( 12 1 6 ) ( 12 1 6 ) cos 2 π 3  (or equivalent)     A1

UV  = 3 ( 12 1 6 )  (or equivalent)     A1

attempting to find the area of UVW using Area =  1 2  × UV × VW × sin  α  for example        M1

Area  = 1 2 ( 3 × 12 1 6 ) ( 3 × 12 1 6 ) sin π 3

= 3 3 4 ( 12 1 3 )  (or equivalent)     A1

 

[4 marks]

c.

u + v + w = 0     R1

12 1 6 ( cos ( 7 π 18 ) + i sin ( 7 π 18 ) + cos 5 π 18 + i sin 5 π 18 + cos 17 π 18 + i sin 17 π 18 ) = 0      A1

consideration of real parts       M1

12 1 6 ( cos ( 7 π 18 ) + cos 5 π 18 + cos 17 π 18 ) = 0

cos ( 7 π 18 ) = cos 17 π 18  explicitly stated      A1

cos 5 π 18 + cos 7 π 18 + cos 17 π 18 = 0      AG

[4 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.



Consider the function defined by fx=kx-5x-k, where x\k and k25

Consider the case where k=3.

State the equation of the vertical asymptote on the graph of y=f(x).

[1]
a.

State the equation of the horizontal asymptote on the graph of y=f(x).

[1]
b.

Use an algebraic method to determine whether f is a self-inverse function.

[4]
c.

Sketch the graph of y=f(x), stating clearly the equations of any asymptotes and the coordinates of any points of intersections with the coordinate axes.

[3]
d.

The region bounded by the x-axis, the curve y=f(x), and the lines x=5 and x=7 is rotated through 2π about the x-axis. Find the volume of the solid generated, giving your answer in the form π(a+b ln2) , where a, b.

[6]
e.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

x=k      A1


[1 mark]

a.

y=k      A1


[1 mark]

b.

METHOD 1

ffx=kkx-5x-k-5kx-5x-k-k        M1

=kkx-5-5x-kkx-5-kx-k        A1

=k2x-5k-5x+5kkx-5-kx+k2

=k2x-5xk2-5        A1

=xk2-5k2-5

=x

ffx=x , (hence f is self-inverse)        R1


Note:
The statement f(f(x))=x could be seen anywhere in the candidate’s working to award R1.

 

METHOD 2

fx=kx-5x-k

x=ky-5y-k        M1


Note:
Interchanging x and y can be done at any stage.


xy-k=ky-5        A1

xy-xk=ky-5

xy-ky=xk-5

yx-k=kx-5        A1

y=f-1x=kx-5x-k  (hence f is self-inverse)        R1


[4 marks]

c.

attempt to draw both branches of a rectangular hyperbola        M1

x=3 and y=3        A1

0, 53 and 53, 0        A1


[3 marks]

d.

METHOD 1

volume=π573x-5x-32dx       (M1)

EITHER

attempt to express 3x-5x-3 in the form p+qx-3       M1

3x-5x-3=3+4x-3       A1

OR

attempt to expand 3x-5x-32 or 3x-52 and divide out       M1

3x-5x-32=9+24x-56x-32       A1

THEN

3x-5x-32=9+24x-3+16x-32       A1

volume=π579+24x-3+16x-32dx

=π9x+24lnx-3-16x-357       A1

=π63+24ln4-4-45+24ln2-8

=π22+24ln2       A1

 

METHOD 2

volume=π573x-5x-32dx       (M1)

substituting u=x-3dudx=1       A1

3x-5=3u+3-5=3u+4

volume=π243u+4u2du       M1

=π249+16u2+24udu       A1

=π9u-16u+24lnu24       A1


Note: Ignore absence of or incorrect limits seen up to this point.


=π22+24ln2       A1


[6 marks]

e.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.



Consider the function fx=ax3+bx2+cx+d , where x and a, b, c, d

Consider the function gx=12x3-3x2+6x-8, where x.

The graph of y=g(x) may be obtained by transforming the graph of y=x3 using a sequence of three transformations.

Write down an expression for f'x.

[1]
a.i.

Hence, given that f1 does not exist, show that b23ac>0.

[3]
a.ii.

Show that g1 exists.

[2]
b.i.

g(x) can be written in the form p(x2)3+q , where p, q.

Find the value of p and the value of q.

[3]
b.ii.

Hence find g-1(x).

[3]
b.iii.

State each of the transformations in the order in which they are applied.

[3]
c.

Sketch the graphs of y=g(x) and y=g-1(x) on the same set of axes, indicating the points where each graph crosses the coordinate axes.

[5]
d.

Markscheme

f'x=3ax2+2bx+c        A1


[1 mark]

a.i.

since f1 does not exist, there must be two turning points       R1

(f'x=0 has more than one solution)

using the discriminant Δ>0        M1

4b2-12ac>0        A1

b2-3ac>0        AG


[4 marks]

a.ii.

METHOD 1

b2-3ac=-32-3×12×6        M1

=9-9

=0        A1

hence g1 exists        AG

 

METHOD 2

g'x=32x2-6x+6        M1

Δ=-62-4×32×6

Δ=36-36=0 there is (only) one point with gradient of 0 and this must be a point of inflexion (since gx is a cubic.)       R1

hence g1 exists        AG


[2 marks]

b.i.

p=12         A1

x-23=x3-6x2+12x-8          (M1)

12x3-6x2+12x-8=12x3-3x2+6x-4

gx=12x-23-4q=-4        A1


[3 marks]

b.ii.

x=12y-23-4          (M1)


Note: Interchanging x and y can be done at any stage.


2x+4=y-23          (M1)

2x+43=y-2

y=2x+43+2

g-1x=2x+43+2        A1


Note: g-1x= must be seen for the final A mark.


[3 marks]

b.iii.

translation through 20,          A1


Note: This can be seen anywhere.


EITHER
a stretch scale factor 12 parallel to the y-axis then a translation through 0-4          A2
OR
a translation through 0-8 then a stretch scale factor 12 parallel to the y-axis          A2


Note:
Accept ‘shift’ for translation, but do not accept ‘move’. Accept ‘scaling’ for ‘stretch’.


[3 marks]

c.

        A1A1A1M1A1


Note:
Award A1 for correct ‘shape’ of g (allow non-stationary point of inflexion)
Award A1 for each correct intercept of g
Award M1 for attempt to reflect their graph in y=x, A1 for completely correct g-1 including intercepts


[5 marks]

d.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
b.iii.
[N/A]
c.
[N/A]
d.



Consider the series lnx+plnx+13lnx+, where x, x>1 and p, p0.

Consider the case where the series is geometric.

Now consider the case where the series is arithmetic with common difference d.

Show that p=±13.

[2]
a.i.

Hence or otherwise, show that the series is convergent.

[1]
a.ii.

Given that p>0 and S=3+3, find the value of x.

[3]
a.iii.

Show that p=23.

[3]
b.i.

Write down d in the form klnx, where k.

[1]
b.ii.

The sum of the first n terms of the series is ln1x3.

Find the value of n.

[8]
b.iii.

Markscheme

EITHER

attempt to use a ratio from consecutive terms        M1

plnxlnx=13lnxplnx  OR  13lnx=lnxr2  OR  plnx=lnx13p

 

Note: Candidates may use lnx1+lnxp+lnx13+ and consider the powers of x in geometric sequence

Award M1 for p1=13p.


OR

r=p  and  r2=13        M1


THEN

p2=13  OR  r=±13          A1

p=±13          AG

 

Note: Award M0A0 for r2=13 or p2=13 with no other working seen.

 

[2 marks]

a.i.

EITHER

since, p=13 and 13<1          R1


OR

since, p=13 and -1<p<1          R1


THEN

 the geometric series converges.          AG


Note: Accept r instead of p.
Award R0 if both values of p not considered.

 

[1 mark]

a.ii.

lnx1-13  =3+3           (A1)

lnx=3-33+3-33  OR  lnx=3-3+3-1  lnx=2          A1

x=e2          A1

 

[3 marks]

a.iii.

METHOD 1

attempt to find a difference from consecutive terms or from u2          M1

correct equation          A1

plnx-lnx=13lnx-plnx  OR  13lnx=lnx+2plnx-lnx


Note:
Candidates may use lnx1+lnxp+lnx13+ and consider the powers of x in arithmetic sequence.

Award M1A1 for p-1=13-p

 

2plnx=43lnx  2p=43          A1

p=23          AG

 

METHOD 2

attempt to use arithmetic mean u2=u1+u32          M1

plnx=lnx+13lnx2          A1

2plnx=43lnx  2p=43          A1

p=23          AG

 

METHOD 3

attempt to find difference using u3          M1

13lnx=lnx+2d  d=-13lnx

 

u2=lnx+1213lnx-lnx  OR  plnx-lnx=-13lnx          A1

plnx=23lnx          A1

p=23          AG

 

[3 marks]

b.i.

d=-13lnx       A1

 

[1 mark]

b.ii.

METHOD 1

Sn=n22lnx+n-1×-13lnx

attempt to substitute into Sn and equate to ln1x3           (M1)

n22lnx+n-1×-13lnx=ln1x3

ln1x3=-lnx3=lnx-3           (A1)

=-3lnx           (A1)

correct working with Sn (seen anywhere)           (A1)

n22lnx-n3lnx+13lnx  OR  nlnx-nn-16lnx  OR  n2lnx+4-n3lnx

correct equation without lnx          A1

n273-n3=-3  OR  n-nn-16=-3 or equivalent


Note:
Award as above if the series 1+p+13+ is considered leading to n273-n3=-3.


attempt to form a quadratic =0           (M1)

n2-7n-18=0

attempt to solve their quadratic           (M1)

n-9n+2=0

n=9          A1

 

METHOD 2

ln1x3=-lnx3=lnx-3           (A1)

=-3lnx           (A1)

listing the first 7 terms of the sequence           (A1)

lnx+23lnx+13lnx+0-13lnx-23lnx-lnx+

recognizing first 7 terms sum to 0           M1

8th term is -43lnx           (A1)

9th term is -53lnx           (A1)

sum of 8th and 9th term =-3lnx           (A1)

n=9          A1

 

[8 marks]

b.iii.

Examiners report

Part (a)(i) was well done with few candidates incorrectly using the value of p to verify rather than to 'show' the given result. In part (a)(ii) most did not consider both values of r and some did know the condition for convergence of a geometric series. Part (a)(iii) was generally well done but some had difficulty in simplifying the surd. Part (b) (i) and (ii) was generally well done. Although many completely correct answers to part b (iii) were noted, weaker candidates often made errors in properties of logarithms or algebraic manipulation leading to an incorrect quadratic equation.

a.i.
[N/A]
a.ii.
[N/A]
a.iii.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
b.iii.



The cubic equation x3-kx2+3k=0 where k>0 has roots α, β and α+β.

Given that αβ=-k24, find the value of k.

Markscheme

α+β+α+β=k           (A1)

α+β=k2

αβα+β=-3k           (A1)

-k24k2=-3k  -k38=-3k           M1

attempting to solve -k38+3k=0 (or equivalent) for k           (M1)

k=26 =24k>0                 A1

 

Note: Award A0 for k=±26 ±24.

 

[5 marks]

Examiners report

[N/A]



Let  f ( x ) = 2 3 x 5 2 x 3 , x R , x 0 .

The graph of  y = f ( x )  has a local maximum at A. Find the coordinates of A.

[5]
a.

Show that there is exactly one point of inflexion, B, on the graph of  y = f ( x ) .

[5]
b.i.

The coordinates of B can be expressed in the form B ( 2 a , b × 2 3 a ) where a, b Q . Find the value of a and the value of b.

[3]
b.ii.

Sketch the graph of  y = f ( x ) showing clearly the position of the points A and B.

[4]
c.

Markscheme

attempt to differentiate      (M1)

f ( x ) = 3 x 4 3 x      A1

Note: Award M1 for using quotient or product rule award A1 if correct derivative seen even in unsimplified form, for example  f ( x ) = 15 x 4 × 2 x 3 6 x 2 ( 2 3 x 5 ) ( 2 x 3 ) 2 .

3 x 4 3 x = 0      M1

x 5 = 1 x = 1      A1

A ( 1 , 5 2 )      A1

[5 marks]

a.

f ( x ) = 0      M1

f ( x ) = 12 x 5 3 ( = 0 )      A1

Note: Award A1 for correct derivative seen even if not simplified.

x = 4 5 ( = 2 2 5 )      A1

hence (at most) one point of inflexion      R1

Note: This mark is independent of the two A1 marks above. If they have shown or stated their equation has only one solution this mark can be awarded.

f ( x )  changes sign at  x = 4 5 ( = 2 2 5 )       R1

so exactly one point of inflexion

[5 marks]

b.i.

x = 4 5 = 2 2 5 ( a = 2 5 )       A1

f ( 2 2 5 ) = 2 3 × 2 2 2 × 2 6 5 = 5 × 2 6 5 ( b = 5 )      (M1)A1

Note: Award M1 for the substitution of their value for  x into  f ( x ) .

[3 marks]

b.ii.

A1A1A1A1

A1 for shape for x < 0
A1 for shape for x > 0
A1 for maximum at A
A1 for POI at B.

Note: Only award last two A1s if A and B are placed in the correct quadrants, allowing for follow through.

[4 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
c.



Consider the function f defined by f ( x ) = x 2 a 2 ,   x R where a is a positive constant.

The function g is defined by g ( x ) = x f ( x ) for | x | > a .

Showing any x and y intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes.

y = f ( x ) ;

[2]
a.i.

Showing any x and y intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes.

y = 1 f ( x ) ;

[4]
a.ii.

Showing any x and y intercepts, any maximum or minimum points and any asymptotes, sketch the following curves on separate axes.

y = | 1 f ( x ) | .

[2]
a.iii.

Find f ( x ) cos x d x .

[5]
b.

By finding g ( x ) explain why g is an increasing function.

[4]
c.

Markscheme

M17/5/MATHL/HP1/ENG/TZ2/09.a.i/M

A1 for correct shape

A1 for correct x and y intercepts and minimum point

[2 marks]

a.i.

M17/5/MATHL/HP1/ENG/TZ2/09.a.ii/M

A1 for correct shape

A1 for correct vertical asymptotes

A1 for correct implied horizontal asymptote

A1 for correct maximum point

[??? marks]

a.ii.

M17/5/MATHL/HP1/ENG/TZ2/09.a.iii/M

A1 for reflecting negative branch from (ii) in the x -axis

A1 for correctly labelled minimum point

[2 marks]

a.iii.

EITHER

attempt at integration by parts     (M1)

( x 2 a 2 ) cos x d x = ( x 2 a 2 ) sin x 2 x sin x d x      A1A1

= ( x 2 a 2 ) sin x 2 [ x cos x + cos x d x ]      A1

= ( x 2 a 2 ) sin x + 2 x cos 2 sin x + c      A1

OR

( x 2 a 2 ) cos x d x = x 2 cos x d x a 2 cos x d x

attempt at integration by parts     (M1)

x 2 cos x d x = x 2 sin x 2 x sin x d x      A1A1

= x 2 sin x 2 [ x cos x + cos x d x ]      A1

= x 2 sin x + 2 x cos x 2 sin x

a 2 cos x d x = a 2 sin x

( x 2 a 2 ) cos x d x = ( x 2 a 2 ) sin x + 2 x cos x 2 sin x + c      A1

[5 marks]

b.

g ( x ) = x ( x 2 a 2 ) 1 2

g ( x ) = ( x 2 a 2 ) 1 2 + 1 2 x ( x 2 a 2 ) 1 2 ( 2 x )     M1A1A1

 

Note:     Method mark is for differentiating the product. Award A1 for each correct term.

 

g ( x ) = ( x 2 a 2 ) 1 2 + x 2 ( x 2 a 2 ) 1 2

both parts of the expression are positive hence g ( x ) is positive     R1

and therefore g is an increasing function (for | x | > a )     AG

[4 marks]

c.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
a.iii.
[N/A]
b.
[N/A]
c.



Sketch the graph of y = 1 3 x x 2 , showing clearly any asymptotes and stating the coordinates of any points of intersection with the axes.

N17/5/MATHL/HP1/ENG/TZ0/06.a

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

N17/5/MATHL/HP1/ENG/TZ0/06.a/M

correct vertical asymptote     A1

shape including correct horizontal asymptote     A1

( 1 3 ,   0 )     A1

( 0 ,   1 2 )     A1

 

Note:     Accept x = 1 3 and y = 1 2 marked on the axes.

 

[4 marks]

Examiners report

[N/A]



The function f is defined by fx=2x+43-x, where x, x3.

Write down the equation of

Find the coordinates where the graph of f crosses

the vertical asymptote of the graph of f.

[1]
a.i.

the horizontal asymptote of the graph of f.

[1]
a.ii.

the x-axis.

[1]
b.i.

the y-axis.

[1]
b.ii.

Sketch the graph of f on the axes below.

[1]
c.

The function g is defined by gx=ax+43-x, where x, x3 and a.

Given that gx=g-1x, determine the value of a.

[4]
d.

Markscheme

x=3                 A1

 

[1 mark]

a.i.

y=-2                 A1

 

[1 mark]

a.ii.

-2,0   (accept x=-2)                 A1

 

[1 mark]

b.i.

0,43   (accept y=43 and f0=43)                 A1

 

[1 mark]

b.ii.

               A1


Note:
Award A1 for completely correct shape: two branches in correct quadrants with asymptotic behaviour.

 

[1 mark]

c.

METHOD 1

gx=y=ax+43-x

attempt to find x in terms of y                (M1)

OR exchange x and y and attempt to find y in terms of x

3y-xy=ax+4                A1

ax+xy=3y-4

xa+y=3y-4

x=3y-4y+a

g-1x=3x-4x+a                A1


Note: Condone use of y=


gxg-1x

ax+43-x3x-4x+a

a=-3                A1

 

METHOD 2

gx=ax+43-x

attempt to find an expression for ggx and equate to x                (M1)

ggx=aax+43-x+43-ax+43-x=x                A1

aax+4+43-x9-3x-ax+4=x

aax+4+43-x5-3+ax=x

aax+4+43-x=x5-3+ax                A1

equating coefficients of x2  (or similar)

a=-3                A1

 

[4 marks]

d.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
c.
[N/A]
d.



Let  f ( x ) = x 2 10 x + 5 x + 1 , x R , x 1 .

Find the co-ordinates of all stationary points.

[4]
a.

Write down the equation of the vertical asymptote.

[1]
b.

With justification, state if each stationary point is a minimum, maximum or horizontal point of inflection.

[4]
c.

Markscheme

f ( x ) = ( 2 x 10 ) ( x + 1 ) ( x 2 10 x + 5 ) 1 ( x + 1 ) 2           M1

f ( x ) = 0 x 2 + 2 x 15 = 0 ( x + 5 ) ( x 3 ) = 0           M1

Stationary points are  ( 5 , 20 ) and ( 3 , 4 )          A1A1

[4 marks]

a.

x = 1         A1

[1 mark]

b.

Looking at the nature table

        M1A1

( 5 , 20 ) is a max and  ( 3 , 4 ) is a min         A1A1

[4 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.



Consider the functions f and g defined by  f ( x ) = ln | x | , x R \ { 0 } , and  g ( x ) = ln | x + k | x R \ { k } , where  k R k > 2 .

The graphs of f and g intersect at the point P .

Describe the transformation by which f ( x ) is transformed to g ( x ) .

[1]
a.

State the range of g .

[1]
b.

Sketch the graphs of y = f ( x ) and y = g ( x ) on the same axes, clearly stating the points of intersection with any axes.

[6]
c.

Find the coordinates of P.

[2]
d.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

translation k units to the left (or equivalent)     A1

[1 mark]

a.

range is  ( g ( x ) ) R      A1

[1 mark]

b.

correct shape of y = f ( x )        A1

their f ( x ) translated k units to left (possibly shown by x = k marked on x -axis)       A1

asymptote included and marked as x = k        A1

f ( x )  intersects x -axis at x = 1 , x = 1        A1

g ( x )  intersects  x -axis at x = k 1 , x = k + 1        A1

g ( x )  intersects  y -axis at  y = ln k        A1

Note: Do not penalise candidates if their graphs “cross” as x ± .

Note: Do not award FT marks from the candidate’s part (a) to part (c).

[6 marks]

c.

at P   ln ( x + k ) = ln ( x )

attempt to solve  x + k = x  (or equivalent)       (M1)

x = k 2 y = ln ( k 2 )   (or  y = ln | k 2 | )       A1

P ( k 2 , ln k 2 )   (or P ( k 2 , ln | k 2 | ) )

[2 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.



A function f is defined by fx=3x2+2, x.

The region R is bounded by the curve y=fx, the x-axis and the lines x=0 and x=6. Let A be the area of R.

The line x=k divides R into two regions of equal area.

Let m be the gradient of a tangent to the curve y=fx.

Sketch the curve y=fx, clearly indicating any asymptotes with their equations and stating the coordinates of any points of intersection with the axes.

[4]
a.

Show that A=2π2.

[4]
b.

Find the value of k.

[4]
c.

Show that m=-6xx2+22.

[2]
d.

Show that the maximum value of m is 273223.

[7]
e.

Markscheme

* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.

a curve symmetrical about the y-axis with correct concavity that has a local maximum point on the positive y-axis        A1

a curve clearly showing that y0 as x±        A1

0,32        A1

horizontal asymptote y=0 (x-axis)        A1

 

[4 marks]

a.

attempts to find 3x2+2dx        (M1)

=32arctanx2        A1

 

Note: Award M1A0 for obtaining k arctanx2 where k32.

Note: Condone the absence of or use of incorrect limits to this stage.

 

=32arctan3-arctan0        (M1)

=32×π3=π2        A1

A=2π2        AG

 

[4 marks]

b.

METHOD 1

EITHER

0k3x2+2dx=2π4

32arctank2=2π4        (M1)

 

OR

k63x2+2dx=2π4

32arctan3-arctank2=2π4        (M1)

arctan3-arctank2=π6

 

THEN

arctank2=π6        A1

k2=tanπ6=13        A1

k=63=23        A1

 

METHOD 2

0k3x2+2dx=k63x2+2dx

32arctank2=32arctan3-arctank2        (M1)

arctank2=π6        A1

k2=tanπ6=13        A1

k=63=23        A1

 

[4 marks]

c.

attempts to find ddx3x2+2        (M1)

=3-12xx2+2-2        A1

so m=-6xx2+22        AG

 

[2 marks]

d.

attempts product rule or quotient rule differentiation        M1

EITHER

dmdx=-6x-22xx2+2-3+x2+2-2-6        A1

OR

dmdx=x2+22-6--6x22xx2+2x2+24        A1

 

Note: Award A0 if the denominator is incorrect. Subsequent marks can be awarded.

 

THEN

attempts to express their dmdx as a rational fraction with a factorized numerator        M1

dmdx=6x2+23x2-2x2+24=63x2-2x2+23

attempts to solve their dmdx=0 for x        M1

x=±23        A1

from the curve, the maximum value of m occurs at x=-23        R1

(the minimum value of m occurs at x=23)

 

Note: Award R1 for any equivalent valid reasoning.

 

maximum value of m is -6-23-232+22        A1

leading to a maximum value of 273223        AG

 

[7 marks]

e.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.



Sketch the graphs of  y = x 2 + 1 and  y = | x 2 | on the following axes.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

straight line graph with correct axis intercepts      A1

modulus graph: V shape in upper half plane      A1

modulus graph having correct vertex and y-intercept      A1

[3 marks]

Examiners report

[N/A]



A function f is defined by fx=1x2-2x-3, where x, x-1, x3.

A function g is defined by gx=1x2-2x-3, where x, x>3.

The inverse of g is g-1.

A function h is defined by hx=arctanx2, where x.

Sketch the curve y=f(x), clearly indicating any asymptotes with their equations. State the coordinates of any local maximum or minimum points and any points of intersection with the coordinate axes.

[6]
a.

Show that g-1x=1+4x2+xx.

[6]
b.i.

State the domain of g-1.

[1]
b.ii.

Given that hga=π4, find the value of a.

Give your answer in the form p+q2r, where p, q, r+.

[7]
c.

Markscheme

 

y-intercept 0,-13         A1


Note:
Accept an indication of -13 on the y-axis.


vertical asymptotes x=-1 and x=3          A1

horizontal asymptote y=0          A1

uses a valid method to find the x-coordinate of the local maximum point          (M1)


Note:
For example, uses the axis of symmetry or attempts to solve f'x=0.


local maximum point 1,-14          A1


Note:
Award (M1)A0 for a local maximum point at x=1 and coordinates not given.


three correct branches with correct asymptotic behaviour and the key features in approximately correct relative positions to each other          A1

 

[6 marks]

a.

x=1y2-2y-3           M1


Note: Award M1 for interchanging x and y (this can be done at a later stage).

 

EITHER

attempts to complete the square           M1

y2-2y-3=y-12-4          A1

x=1y-12-4

y-12-4=1xy-12=4+1x          A1

y-1=±4+1x =±4x+1x

 

OR

attempts to solve xy2-2xy-3x-1=0 for y         M1

y=--2x±-2x2+4x3x+12x         A1


Note:
Award A1 even if - (in ±) is missing


=2x±16x2+4x2x         A1

 

THEN

=1±4x2+xx         A1

y>3 and hence y=1-4x2+xx is rejected                R1 

 

Note: Award R1 for concluding that the expression for y must have the ‘+’ sign.
The R1 may be awarded earlier for using the condition x>3.

 

y=1+4x2+xx

g-1x=1+4x2+xx         AG

 

[6 marks]

b.i.

domain of g-1 is x>0         A1

 

[1 mark]

b.ii.

attempts to find hga          (M1)

hga=arctanga2   hga=arctan12a2-2a-3          (A1)

arctanga2=π4   arctan12a2-2a-3=π4

attempts to solve for ga         M1

ga=2  1a2-2a-3=2

 

EITHER

a=g-12         A1

attempts to find their g-12         M1

a=1+422+22         A1

 

Note: Award all available marks to this stage if x is used instead of a.


OR

2a2-4a-7=0         A1

attempts to solve their quadratic equation         M1

a=--4±-42+4274  =4±724         A1


Note: Award all available marks to this stage if x is used instead of a.


THEN

a=1+322  (as a>3)         A1

p=1, q=3, r=2

 

Note: Award A1 for a=1+1218  p=1, q=1, r=18

 

[7 marks]

c.

Examiners report

Part (a) was generally well done. It was pleasing to see how often candidates presented complete sketches here. Several decided to sketch using the reciprocal function. Occasionally, candidates omitted the upper branches or forgot to calculate the y-coordinate of the maximum.

Part (b): The majority of candidates knew how to start finding the inverse, and those who attempted completing the square or using the quadratic formula to solve for y made good progress (both methods equally seen). Otherwise, they got lost in the algebra. Very few explicitly justified the rejection of the negative root.

Part (c) was well done in general, with some algebraic errors seen in occasions.

a.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
c.



The function f is defined by  f ( x ) = e 2 x 6 e x + 5 , x R , x a . The graph of  y = f ( x ) is shown in the following diagram.

Find the largest value of a such that f has an inverse function.

[3]
a.

For this value of a , find an expression for  f 1 ( x ) , stating its domain.

[5]
b.

Markscheme

attempt to differentiate and set equal to zero       M1

f ( x ) = 2 e 2 x 6 e x = 2 e x ( e x 3 ) = 0        A1

minimum at  x = ln 3

a = ln 3        A1

[3 marks]

a.

Note: Interchanging x and y can be done at any stage.

y = ( e x 3 ) 2 4      (M1)

e x 3 = ± y + 4      A1

as  x ln 3 x = ln ( 3 y + 4 )        R1

so  f 1 ( x ) = ln ( 3 x + 4 )     A1

domain of  f 1 is  x R 4 x < 5     A1

[5 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.



Let f(x) = x4 + px3 + qx + 5 where p, q are constants.

The remainder when f(x) is divided by (x + 1) is 7, and the remainder when f(x) is divided by (x − 2) is 1. Find the value of p and the value of q.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

attempt to substitute x = −1 or x = 2 or to divide polynomials      (M1)

1 − pq + 5 = 7, 16 + 8p + 2q + 5 = 1 or equivalent      A1A1

attempt to solve their two equations M1

p = −3, q = 2      A1

[5 marks]

Examiners report

[N/A]



Consider the polynomial q ( x ) = 3 x 3 11 x 2 + k x + 8 .

Given that q ( x ) has a factor ( x 4 ) , find the value of k .

[3]
a.

Hence or otherwise, factorize q ( x ) as a product of linear factors.

[3]
b.

Markscheme

q ( 4 ) = 0     (M1)

192 176 + 4 k + 8 = 0   ( 24 + 4 k = 0 )     A1

k = 6     A1

[3 marks]

a.

3 x 3 11 x 2 6 x + 8 = ( x 4 ) ( 3 x 2 + p x 2 )

equate coefficients of x 2 :     (M1)

12 + p = 11

p = 1

( x 4 ) ( 3 x 2 + x 2 )     (A1)

( x 4 ) ( 3 x 2 ) ( x + 1 )     A1

 

Note:     Allow part (b) marks if any of this work is seen in part (a).

 

Note:     Allow equivalent methods (eg, synthetic division) for the M marks in each part.

 

[3 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.



A function f is defined by fx=x1-x2 where -1x1.

The graph of y=f(x) is shown below.

Show that f is an odd function.

[2]
a.

The range of f is ayb, where a, b.

Find the value of a and the value of b.

[6]
b.

Markscheme

attempts to replace x with -x        M1

f-x=-x1--x2

=-x1--x2=-fx         A1

 

Note: Award M1A1 for an attempt to calculate both f-x and -f-x independently, showing that they are equal.
Note: Award M1A0 for a graphical approach including evidence that either the graph is invariant after rotation by 180° about the origin or the graph is invariant after a reflection in the y-axis and then in the x-axis (or vice versa).

 

so f is an odd function         AG

  

[2 marks]

a.

attempts both product rule and chain rule differentiation to find f'x        M1

f'x=x×12×-2x×1-x2-12+1-x212×1 =1-x2-x21-x2         A1

=1-2x21-x2

sets their f'x=0        M1

x=±12         A1

attempts to find at least one of f±12         (M1)

 

Note: Award M1 for an attempt to evaluate fx at least at one of their f'x=0  roots.

 

a=-12  and b=12         A1

 

Note: Award A1 for -12y12.

  

[6 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.



Let  f ( x ) = 2 x + 6 x 2 + 6 x + 10 , x R .

Show that f ( x ) has no vertical asymptotes.

[3]
a.

Find the equation of the horizontal asymptote. 

[2]
b.

Find the exact value of  0 1 f ( x ) d x , giving the answer in the form  ln q , q Q .

[3]
c.

Markscheme

x 2 + 6 x + 10 = x 2 + 6 x + 9 + 1 = ( x + 3 ) 2 + 1       M1A1

So the denominator is never zero and thus there are no vertical asymptotes. (or use of discriminant is negative)       R1

[3 marks]

a.

x ± , f ( x ) 0  so the equation of the horizontal asymptote is y = 0    M1A1

[2 marks]

b.

0 1 2 x + 6 x 2 + 6 x + 10 d x = [ ln ( x 2 + 6 x + 10 ) ] 0 1 = ln 17 ln 10 = ln 17 10       M1A1A1

[3 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.



The equation 3px2+2px+1=p has two real, distinct roots.

Find the possible values for p.

[5]
a.

Consider the case when p=4. The roots of the equation can be expressed in the form x=a±136, where a. Find the value of a.

[2]
b.

Markscheme

attempt to use discriminant b2-4ac>0                M1

2p2-43p1-p>0

16p2-12p>0                (A1)

p4p-3>0

attempt to find critical values p=0, p=34                M1

recognition that discriminant >0                (M1)

p<0 or p>34                 A1


Note:
Condone ‘or’ replaced with ‘and’, a comma, or no separator

 

[5 marks]

a.

p=412x2+8x-3=0

valid attempt to use x=-b±b2-4ac2a (or equivalent)                M1

x=-8±20824

x=-2±136

a=-2                 A1

 

[2 marks]

b.

Examiners report

[N/A]
a.
[N/A]
b.



Consider  f ( x ) = 2 x 4 x 2 1 1 < x < 1 .

For the graph of  y = f ( x ) ,

Find  f ( x ) .

[2]
a.i.

Show that, if  f ( x ) = 0 , then  x = 2 3 .

[3]
a.ii.

find the coordinates of the y -intercept.

[1]
b.i.

show that there are no x -intercepts.

[2]
b.ii.

sketch the graph, showing clearly any asymptotic behaviour.

[2]
b.iii.

Show that 3 x + 1 1 x 1 = 2 x 4 x 2 1 .

[2]
c.

The area enclosed by the graph of y = f ( x ) and the line y = 4 can be expressed as ln v . Find the value of v .

[7]
d.

Markscheme

attempt to use quotient rule (or equivalent)       (M1)

f ( x ) = ( x 2 1 ) ( 2 ) ( 2 x 4 ) ( 2 x ) ( x 2 1 ) 2        A1

= 2 x 2 + 8 x 2 ( x 2 1 ) 2

[2 marks]

a.i.

f ( x ) = 0

simplifying numerator (may be seen in part (i))       (M1)

x 2 4 x + 1 = 0  or equivalent quadratic equation       A1

 

EITHER

use of quadratic formula

x = 4 ± 12 2        A1

 

OR

use of completing the square

( x 2 ) 2 = 3        A1

 

THEN

x = 2 3   (since  2 + 3  is outside the domain)       AG

 

Note: Do not condone verification that x = 2 3 f ( x ) = 0 .

Do not award the final A1 as follow through from part (i).

 

[3 marks]

a.ii.

(0, 4)       A1

[1 mark]

b.i.

2 x 4 = 0 x = 2       A1

outside the domain       R1

[2 marks]

b.ii.

      A1A1

award A1 for concave up curve over correct domain with one minimum point in the first quadrant
award A1 for approaching x = ± 1 asymptotically

[2 marks]

b.iii.

valid attempt to combine fractions (using common denominator)      M1

3 ( x 1 ) ( x + 1 ) ( x + 1 ) ( x 1 )       A1

= 3 x 3 x 1 x 2 1

= 2 x 4 x 2 1       AG

[2 marks]

c.

f ( x ) = 4 2 x 4 = 4 x 2 4       M1

       ( x = 0   or)   x = 1 2       A1

 

area under the curve is  0 1 2 f ( x ) d x       M1

= 0 1 2 3 x + 1 1 x 1 d x

Note: Ignore absence of, or incorrect limits up to this point.

 

= [ 3 ln | x + 1 | ln | x 1 | ] 0 1 2       A1

= 3 ln 3 2 ln 1 2 ( 0 )

= ln 27 4       A1

area is  2 0 1 2 f ( x ) d x   or  0 1 2 4 d x 0 1 2 f ( x ) d x       M1

= 2 ln 27 4

= ln 4 e 2 27       A1

( v = 4 e 2 27 )

 

[7 marks]

d.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.i.
[N/A]
b.ii.
[N/A]
b.iii.
[N/A]
c.
[N/A]
d.



The following diagram shows the graph of  y = f ( x ) . The graph has a horizontal asymptote at  y = 1 . The graph crosses the  x -axis at  x = 1 and  x = 1 , and the  y -axis at  y = 2 .

On the following set of axes, sketch the graph of  y = [ f ( x ) ] 2 + 1 , clearly showing any asymptotes with their equations and the coordinates of any local maxima or minima.

 

Markscheme

no y values below 1        A1

horizontal asymptote at y = 2 with curve approaching from below as x ±         A1

(±1,1) local minima        A1

(0,5) local maximum        A1

smooth curve and smooth stationary points        A1

[5 marks]

Examiners report

[N/A]



Consider the function  g ( x ) = 4 cos x + 1 a x π 2 where  a < π 2 .

For  a = π 2 , sketch the graph of  y = g ( x ) . Indicate clearly the maximum and minimum values of the function.

[3]
a.

Write down the least value of a such that g has an inverse.

[1]
b.

For the value of a found in part (b), write down the domain of g 1 .

[1]
c.i.

For the value of a found in part (b), find an expression for g 1 ( x ) .

[2]
c.ii.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

concave down and symmetrical over correct domain       A1

indication of maximum and minimum values of the function (correct range)       A1A1

 

[3 marks]

a.

a = 0      A1

Note: Award A1 for a = 0 only if consistent with their graph.

 

[1 mark]

b.

1 x 5      A1

Note: Allow FT from their graph.

 

[1 mark]

c.i.

y = 4 cos x + 1

x = 4 cos y + 1

x 1 4 = cos y       (M1)

y = arccos ( x 1 4 )

g 1 ( x ) = arccos ( x 1 4 )       A1

 

[2 marks]

c.ii.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.i.
[N/A]
c.ii.



Consider the function  f ( x ) = x 4 6 x 2 2 x + 4 x R .

The graph of f is translated two units to the left to form the function g ( x ) .

Express  g ( x )  in the form  a x 4 + b x 3 + c x 2 + d x + e where  a b c d e Z .

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

g ( x ) = f ( x + 2 ) ( = ( x + 2 ) 4 6 ( x + 2 ) 2 2 ( x + 2 ) + 4 )       M1

attempt to expand  ( x + 2 ) 4       M1

( x + 2 ) 4 = x 4 + 4 ( 2 x 3 ) + 6 ( 2 2 x 2 ) + 4 ( 2 3 x ) + 2 4        (A1)

= x 4 + 8 x 3 + 24 x 2 + 32 x + 16       A1

g ( x ) = x 4 + 8 x 3 + 24 x 2 + 32 x + 16 6 ( x 2 + 4 x + 4 ) 2 x 4 + 4

= x 4 + 8 x 3 + 18 x 2 + 6 x 8       A1

Note: For correct expansion of  f ( x 2 ) = x 4 8 x 3 + 18 x 2 10 x  award max  M0M1(A1)A0A1.

[5 marks]

Examiners report

[N/A]



The function  f is defined by  f ( x ) = a x + b c x + d , for  x R , x d c .

The function  g is defined by  g ( x ) = 2 x 3 x 2 , x R , x 2

Express  g ( x ) in the form  A + B x 2  where A, B are constants.

Markscheme

g ( x ) = 2 + 1 x 2      A1A1

[2 marks]

Examiners report

[N/A]



Sketch the graph of  y = x 4 2 x 5 , stating the equations of any asymptotes and the coordinates of any points of intersection with the axes.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

correct shape: two branches in correct quadrants with asymptotic behaviour      A1

crosses at (4, 0) and  ( 0 , 4 5 )       A1A1

asymptotes at  x = 5 2 and  y = 1 2       A1A1

 

[5 marks]

Examiners report

[N/A]



A continuous random variable X has the probability density function

fx=2b-ac-ax-a,axc2b-ab-cb-x,c<xb0,otherwise.

The following diagram shows the graph of y=fx for axb.

Given that ca+b2, find an expression for the median of X in terms of a, b and c.

Markscheme

let m be the median


EITHER

attempts to find the area of the required triangle          M1

base is m-a          (A1)

and height is 2b-ac-am-a

area =12m-a×2b-ac-am-a  =m-a2b-ac-a         A1

 

OR

attempts to integrate the correct function          M1

am2b-ac-ax-adx

=2b-ac-a12x-a2am  OR  2b-ac-ax22-axam         A1A1

 

Note: Award A1 for correct integration and A1 for correct limits.

 

THEN

sets up (their) am2b-ac-ax-adx or area =12         M1

 

Note: Award M0A0A0M1A0A0 if candidates conclude that m>c and set up their area or sum of integrals =12.

 

m-a2b-ac-a=12

m=a±b-ac-a2         (A1)

 

as m>a, rejects m=a-b-ac-a2

so m=a+b-ac-a2         A1

  

[6 marks]

Examiners report

[N/A]



Consider the function f ( x ) = 1 x 2 + 3 x + 2 ,   x R ,   x 2 ,   x 1 .

Express x 2 + 3 x + 2 in the form ( x + h ) 2 + k .

[1]
a.i.

Factorize x 2 + 3 x + 2 .

[1]
a.ii.

Sketch the graph of f ( x ) , indicating on it the equations of the asymptotes, the coordinates of the y -intercept and the local maximum.

[5]
b.

Hence find the value of p if 0 1 f ( x ) d x = ln ( p ) .

[4]
d.

Sketch the graph of y = f ( | x | ) .

[2]
e.

Determine the area of the region enclosed between the graph of y = f ( | x | ) , the x -axis and the lines with equations x = 1 and x = 1 .

[3]
f.

Markscheme

x 2 + 3 x + 2 = ( x + 3 2 ) 2 1 4      A1

[1 mark]

a.i.

x 2 + 3 x + 2 = ( x + 2 ) ( x + 1 )      A1

[1 mark]

a.ii.

M17/5/MATHL/HP1/ENG/TZ1/B11.b/M

A1 for the shape

A1 for the equation y = 0

A1 for asymptotes x = 2 and x = 1

A1 for coordinates ( 3 2 ,   4 )

A1 y -intercept ( 0 ,   1 2 )

[5 marks]

b.

0 1 1 x + 1 1 x + 2 d x

= [ ln ( x + 1 ) ln ( x + 2 ) ] 0 1      A1

= ln 2 ln 3 ln 1 + ln 2      M1

= ln ( 4 3 )      M1A1

p = 4 3

[4 marks]

d.

M17/5/MATHL/HP1/ENG/TZ1/B11.e/M

symmetry about the y -axis     M1

correct shape     A1

 

Note:     Allow FT from part (b).

 

[2 marks]

e.

2 0 1 f ( x ) d x      (M1)(A1)

= 2 ln ( 4 3 )      A1

 

Note:     Do not award FT from part (e).

 

[3 marks]

f.

Examiners report

[N/A]
a.i.
[N/A]
a.ii.
[N/A]
b.
[N/A]
d.
[N/A]
e.
[N/A]
f.



Let  f ( x ) = 2 x 2 5 x 12 x + 2 , x R , x 2 .

Find all the intercepts of the graph of f ( x ) with both the x  and y  axes.

[4]
a.

Write down the equation of the vertical asymptote.

[1]
b.

As  x ±  the graph of  f ( x )  approaches an oblique straight line asymptote.

Divide  2 x 2 5 x 12 by  x + 2  to find the equation of this asymptote.

[4]
c.

Markscheme

x = 0 y = 6 intercept on the  y  axes is (0, −6)     A1

2 x 2 5 x 12 = 0 ( 2 x + 3 ) ( x 4 ) = 0 x = 3 2 or 4       M1

intercepts on the  x  axes are ( 3 2 , 0 ) and ( 4 , 0 )      A1A1

[4 marks]

a.

x = 2     A1

[1 mark]

b.

f ( x ) = 2 x 9 + 6 x + 2           M1A1

So equation of asymptote is y = 2 x 9           M1A1

[4 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.



The function f is defined by f ( x ) = 2 x 3 + 5 ,   2 x 2 .

Write down the range of f .

[2]
a.

Find an expression for f 1 ( x ) .

[2]
b.

Write down the domain and range of f 1 .

[2]
c.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

11 f ( x ) 21      A1A1

 

Note:     A1 for correct end points, A1 for correct inequalities.

 

[2 marks]

a.

f 1 ( x ) = x 5 2 3      (M1)A1

[2 marks]

b.

11 x 21 ,   2 f 1 ( x ) 2      A1A1

[2 marks]

c.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.



Solve the equation log3x=12log23+log34x3, where x>0.

Markscheme

attempt to use change the base                (M1)

log3x=log322+log34x3

attempt to use the power rule                (M1)

log3x=log32+log34x3

attempt to use product or quotient rule for logs, lna+lnb=lnab                (M1)

log3x=log342x3


Note:
The M marks are for attempting to use the relevant log rule and may be applied in any order and at any time during the attempt seen.


x=42x3

x=32x6

x5=132                (A1)

x=12                A1

 

[5 marks]

Examiners report

[N/A]



The quadratic equation x 2 2 k x + ( k 1 ) = 0 has roots α and β such that α 2 + β 2 = 4 . Without solving the equation, find the possible values of the real number k .

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

α + β = 2 k    A1

α β = k 1    A1

( α + β ) 2 = 4 k 2 α 2 + β 2 + 2 α β k 1 = 4 k 2    (M1)

α 2 + β 2 = 4 k 2 2 k + 2

α 2 + β 2 = 4 4 k 2 2 k 2 = 0    A1

attempt to solve quadratic     (M1)

k = 1 ,   1 2    A1

[6 marks]

Examiners report

[N/A]



Solve  ( ln x ) 2 ( ln 2 ) ( ln x ) < 2 ( ln 2 ) 2 .

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

( ln x ) 2 ( ln 2 ) ( ln x ) 2 ( ln 2 ) 2 ( = 0 )

EITHER

ln x = ln 2 ± ( ln 2 ) 2 + 8 ( ln 2 ) 2 2      M1

= ln 2 ± 3 ln 2 2      A1

OR

( ln x 2 ln 2 ) ( ln x + 2 ln 2 ) ( = 0 )      M1A1

THEN

ln x = 2 ln 2 or  ln 2      A1

x = 4 or  x = 1 2        (M1)A1   

Note: (M1) is for an appropriate use of a log law in either case, dependent on the previous M1 being awarded, A1 for both correct answers.

solution is  1 2 < x < 4      A1

[6 marks]

Examiners report

[N/A]



The following diagram shows the graph of y=arctan2x+1+π4 for x, with asymptotes at y=-π4 and y=3π4.

Describe a sequence of transformations that transforms the graph of y=arctan x to the graph of y=arctan2x+1+π4 for x.

[3]
a.

Show that arctanp+arctanqarctanp+q1-pq where p, q>0 and pq<1.

[4]
b.

Verify that arctan 2x+1=arctan xx+1+π4 for x, x>0.

[3]
c.

Using mathematical induction and the result from part (b), prove that Σr=1narctan12r2=arctannn+1 for n+.

[9]
d.

Markscheme

EITHER
horizontal stretch/scaling with scale factor 12


Note: Do not allow ‘shrink’ or ‘compression’


followed by a horizontal translation/shift 12 units to the left           A2


Note: Do not allow ‘move’


OR

horizontal translation/shift 1 unit to the left

followed by horizontal stretch/scaling with scale factor 12     A2


THEN

vertical translation/shift up by π4 (or translation through 0π4          A1
(may be seen anywhere)

 

[3 marks]

a.

let α=arctanp and β=arctanq        M1

p=tanα and q=tanβ        (A1)

tanα+β=p+q1-pq        A1

α+β=arctanp+q1-pq        A1

so arctanp+arctanqarctanp+q1-pq where p, q>0 and pq<1.       AG

 

[4 marks]

b.

METHOD 1

π4=arctan1 (or equivalent)        A1

arctanxx+1+arctan1=arctanxx+1+11-xx+11        A1

=arctanx+x+1x+1x+1-xx+1        A1

=arctan2x+1       AG

 

METHOD 2

tanπ4=1 (or equivalent)        A1

Consider arctan2x+1-arctanxx+1=π4

tanarctan2x+1-arctanxx+1

=arctan2x+1-xx+11+x2x+1x+1        A1

=arctan2x+1x+1-xx+1+x2x+1        A1

=arctan 1       AG

 

METHOD 3

tan arctan2x+1=tanarctanxx+1+π4

tanπ4=1 (or equivalent)        A1

LHS=2x+1        A1

RHS=xx+1+11-xx+1=2x+1        A1

 

[3 marks]

c.

let Pn be the proposition that  Σr=1narctan12r2=arctannn+1 for n+

consider P1

when n=1, Σr=11arctan12r2=arctan12=RHS and so P1 is true          R1

assume Pk is true, ie. Σr=1karctan12r2=arctankk+1 k+           M1

 

Note: Award M0 for statements such as “let n=k”.
Note: Subsequent marks after this M1 are independent of this mark and can be awarded.

 

consider Pk+1:

Σr=1k+1arctan12r2=Σr=1karctan12r2+arctan12k+12           (M1)

=arctankk+1+arctan12k+12        A1

=arctankk+1+12k+121-kk+112k+12           M1

=arctank+12k2+2k+12k+13-k        A1

 

Note: Award A1 for correct numerator, with (k+1) factored. Denominator does not need to be simplified

 

=arctank+12k2+2k+12k3+6k2+5k+2        A1

 

Note: Award A1 for denominator correctly expanded. Numerator does not need to be simplified. These two A marks may be awarded in any order

 

=arctank+12k2+2k+1k+22k2+2k+1=arctank+1k+2        A1

 

Note: The word ‘arctan’ must be present to be able to award the last three A marks

 

Pk+1 is true whenever Pk is true and P1 is true, so

Pn is true for for n+         R1

 

Note: Award the final R1 mark provided at least four of the previous marks have been awarded.
Note: To award the final R1, the truth of Pk must be mentioned. ‘Pk implies Pk+1’ is insufficient to award the mark.

 

[9 marks]

d.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.



Use the binomial theorem to expand cosθ+isinθ4. Give your answer in the form a+bi where a and b are expressed in terms of sinθ and cosθ.

[3]
a.

Use de Moivre’s theorem and the result from part (a) to show that cot4θ=cot4θ-6cot2θ+14cot3θ-4cotθ.

[5]
b.

Use the identity from part (b) to show that the quadratic equation x2-6x+1=0 has roots cot2π8 and cot23π8.

[5]
c.

Hence find the exact value of cot23π8.

[4]
d.

Deduce a quadratic equation with integer coefficients, having roots cosec2π8 and cosec23π8.

[3]
e.

Markscheme

* This sample question was produced by experienced DP mathematics senior examiners to aid teachers in preparing for external assessment in the new MAA course. There may be minor differences in formatting compared to formal exam papers.

uses the binomial theorem on cosθ+isinθ4       M1

=C04cos4θ+C14cos3θisinθ+C24cos2θi2sin2θ+C34cosθi3sin3θ+C44i4sin4θ        A1

=cos4θ-6cos2θsin2θ+sin4θ+i4cos3θsinθ-4cosθsin3θ        A1

 

[3 marks]

a.

(using de Moivre’s theorem with n=4 gives) cos4θ+isin4θ        (A1)

equates both the real and imaginary parts of cos4θ+isin4θ and cos4θ-6cos2θsin2θ+sin4θ+i4cos3θsinθ-4cosθsin3θ       M1

cos4θ=cos4θ-6cos2θsin2θ+sin4θ  and  sin4θ=4cos3θsinθ-4cosθsin3θ

recognizes that cot4θ=cos4θsin4θ        (A1)

substitutes for sin4θ and cos4θ into cos4θsin4θ       M1

cot4θ=cos4θ-6cos2θsin2θ+sin4θ4cos3θsinθ-4cosθsin3θ

divides the numerator and denominator by sin4θ to obtain

cot4θ=cos4θ-6cos2θsin2θ+sin4θsin4θ4cos3θsinθ-4cosθsin3θsin4θ        A1

cot4θ=cot4θ-6cot2θ+14cot3θ-4cotθ        AG

 

[5 marks]

b.

setting cot4θ=0 and putting x=cot2θ in the numerator of cot4θ=cot4θ-6cot2θ+14cot3θ-4cotθ gives x2-6x+1=0        M1

attempts to solve cot4θ=0 for θ        M1

4θ=π2,3π2, 4θ=122n+1π,n=0,1,        (A1)

θ=π8,3π8        A1

 

Note: Do not award the final A1 if solutions other than θ=π8,3π8 are listed.

 

finding the roots of cot4θ=0 θ=π8,3π8 corresponds to finding the roots of x2-6x+1=0 where x=cot2θ        R1

so the equation x2-6x+1=0 as roots cot2π8 and cot23π8        AG

 

[5 marks]

c.

attempts to solve x2-6x+1=0 for x        M1

x=3±22        A1

since cot2π8>cot23π8, cot23π8 has the smaller value of the two roots        R1

 

Note: Award R1 for an alternative convincing valid reason.

 

so cot23π8=3-22        A1

 

[4 marks]

d.

let y=cosec2θ

uses cot2θ=cosec2θ-1 where x=cot2θ        (M1)

x2-6x+1=0y-12-6y-1+1=0        M1

y2-8y+8=0        A1

 

[3 marks]

e.

Examiners report

[N/A]
a.
[N/A]
b.
[N/A]
c.
[N/A]
d.
[N/A]
e.